Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Storm Dynamics Control Sedimentation and Shelf‐Bay‐Marsh Sediment Exchange Along the Louisiana CoastHurricanes can benefit wetland accretion by augmenting the delivery of mineral sediment, an essential process allowing marshes to offset submergence during rising sea levels. Using Hurricane Gustav (2008, Louisiana) as a control, we examined eight synthetic storms with varying characteristics (track, speed, intensity, size) to evaluate sediment exchange between the inner shelf and bay and bay‐to‐marsh interfaces. All storms showed net landward sediment exchange from the inner shelf to the bay to the marsh—storms with closer proximity, higher intensity, and slower forward speed positively correlated with net sediment exchange; storm size had little impact. Except for slow‐moving storms (½ speed of Gustav), our analyses suggest that most hurricane scenarios cause net bay erosion, because more sediment is conveyed to landward wetlands than is replenished from erosion of the inner shelf. Our results suggest that the ongoing deepening of the bay will likely worsen because of rising sea levelsmore » « lessFree, publicly-accessible full text available November 28, 2025
-
Abstract Coastal saltmarshes keep pace with sea-level rise through in-situ production of organic material and incorporation of allochthonous inorganic sediment. Here we report rates of vertical accretion of 16 new sediment cores collected proximal to platform edges within saltmarshes located behind four barrier islands along the southeast United States coast. All but two of these exceed the contemporaneous rate of relative sea-level rise, often by a factor of 1.5 or more. Comparison with 80 additional measurements compiled across the Georgia Bight reveals that marshes situated closer to inlets and large bays generally accrete faster than those adjacent to small creeks or within platform interiors. These results demonstrate a spatial dichotomy in the resilience of backbarrier saltmarshes: marsh interiors are near a tipping point, but allochthonous mineral sediment fluxes allow enhanced local resilience along well-exposed and platform-edge marshes. Together, this suggests that backbarrier marshes are trending towards rapid, doughnut-like fragmentation.more » « less
-
Abstract Expansion of drainage networks through the headward erosion of tidal creeks is an eco‐geomorphologic response of salt marshes to accelerated sea‐level rise (SLR). This response can counter the negative impacts of an elevation deficit by increasing drainage and encouraging plant health, thereby reducing potential for submergence and marsh platform loss. In the wetlands of Cape Romain, SC, intense bioturbation near creek heads by the common marsh crabSesarma reticulatumhas been found to facilitate sediment erosion and rapid creek growth. This keystone grazer has been recently observed to have increasing influence on landscape evolution throughout the southeast US coast. Here, we compare measurements taken at Sapelo Island, GA, with those previously collected at Cape Romain, to confirm that eco‐geomorphic feedbacks facilitating creek growth at each location are similar, and to compare these processes under differing background conditions. We use sediment cores, precise elevation measurements and historical imagery to compare substrate properties, elevation within the tidal frame, creek growth rates and drainage morphology at both sites. Our results show identical processes; however, the higher elevation of the marsh at Sapelo Island leads to shallower and shorter periods of tidal inundation, explaining the greater soil strength and lower belowground biomass compared with the marsh at Cape Romain. The smaller tidal range at the site in Cape Romain compared with Sapelo Island translates to a proportionally shallower depth of tidal creeks, which therefore requires less erosion to produce headward creek extension. These effects are likely to have contributed to slower growth rates of tidal creeks at Sapelo Island during the past several decades of SLR. Our findings highlight the similarities in process but differences in rates in how marshes are responding to climate‐related stress.more » « less
-
When longshore transport systems encounter tidal inlets, complex mechanisms are involved in bypassing sand to downdrift barriers. Here, this process is examined at Plum Island Sound and Essex Inlets, Massachusetts, USA. One major finding from this study is that sand is transferred along the coast—especially at tidal inlets—by parcels, in discrete steps, and over decadal-scale periods. The southerly orientation of the main-ebb channel at Plum Island Sound, coupled with the landward migration of bars from the ebb delta to the central portion of the downdrift Castle Neck barrier island, have formed a beach protuberance. During the constructional phase, sand is sequestered at the protuberance and the spit-end of the barrier becomes sediment starved, leading to shoreline retreat and a broadening of the spit platform at the mouth to Essex Bay (downdrift side of Castle Neck). Storm-induced sand transport from erosion of the spit and across the spit platform is washed into Essex Bay, filling channels and enlarging flood deltas. This study illustrates the pathways and processes of sand transfer along the shoreline of a barrier-island/tidal-inlet system and provides an important example of the processes that future hydrodynamic and sediment-transport modeling should strive to replicate.more » « less
An official website of the United States government
